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Outline

* Introduction to Adversarial Examples in Deep Learning



Deep Learning

 Nowadays, deep learning has achieved remarkable success in a variety of disciplines
including cormp 1, natl juag , multi-agent decision making as
well as scientific and engineering applications.

AlphaStar
~ Deep Neural Network + Gradient Descent Method

Powerful Expressivity Efficient Opt Alg



Deep Neural Network

« A multilayer neural network is a function from input x € R¢ to output y € R™,
recursively defined as follows:

h =0 (Wix + b)), W;eR™* b € R™,
hy =0 (Why_1 + b)), W,cR™*M-1 b cR™ 2<¢< -1,
y=Wh +b, W cR™™ b c¢R™,

where o 1s the (non-linear) activation function and L is the depth of the neural
network. Here, we mainly focus on ReLU nets 1.e. 6(x) = max {0, x}.
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Train Deep Model via Gradient Descent Method

 Data: we consider a binary classification task: X - Y € {—1, 41}, and let D be the data
distributionon X x Y.

* Model: parameterized neural network classifier: {fg}gco.
» Objective: we evaluate the classification performance by the test loss:
L(0) = Exy)~pl[l(fo(x),¥)],
where [(-,-) denotes loss function, e.g. MSE-loss: I(z,y) = (z — y)?, 0-1loss:I{z # y}.

* In practice, we aim to minimize the empirical risk (ERM) on training dataset S :=
{(x1,v1), ..., (xn, yy) } 1.1.d. sampled from p%oulation D instead of the test loss:

- 1
minL©) =5 ) (falx). 7).

e
» Training Algorithm: we use gradient descent (GD) to minimize the training loss L(6) :
0«6 —nVyeL(60),
where 1 IS learning rate.



Adversarial Examples

« Although deep neural networks have achieved remarkable success in practice, it is
well-known that modern neural networks are vulnerable to adversarial examples.

« Specifically, for a given image X, an indistinguishable small but adversarial
perturbation o is chosen to fool the classifier f to produce a wrong class using
f(x +90)[Szegedy et al, 2013].

+.007 x —
T T+ 0
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

An Instance for Adversarial Example



Improve Robustness via Adversarial Training

« To mitigate this problem, a common approach is to design adversarial
training algorithms [Madry et al, 2018] by using adversarial examples
as training data.

/\-

dataset S = {(x1,¥1), ..., ey, Y}
and we aim to solve the following

min—max optimization problem:

Concretely, we consider a training < ~
P

min — 2 max L(fg(x; + 6),y;) N / .

6e® N I6]|<e _

* Networks trained using adversarial training are significantly more
robust than those trained using the standard gradient descent algorithm.



Overview

In this talk, we mainly provide a comprehensive theoretical
understanding of adversarial examples from two perspectives:
expressive power and training dynamics.

/Paper List: N
1. Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
2. Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks

3. Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning
\Process Under Structured Data -
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* Theoretical Understanding of Adversarial Examples:

1. Perspective of Expressive Power: Robustness Requires Large Models



Why Robust Generalization in Deep Learning is Difficult:
Perspective of Expressive Power 1

Binghui Li Jikai Jin Han Zhong John Hopcroft Liwei Wang

1This work has been accepted by NeurlIPS 2022, where the first two authors have equal contributions
and the last author is the corresponding author.
2Qur full paper can be found at https://arxiv.org/abs/2205.13863 .
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Robust Generalization Gap Is Large!

« However, while the state-of-the-art adversarial training methods can
achieve high robust training accuracy, all existing methods suffer from
large robust test error, which is also called robust overfitting.

== Test robust = Test standard

Clean training ~ Adversarial training b i sandard
~ 0.8
Robust test 3.5% 45.8% N
Robust train - 100% A e P e
Clean test 95.2% 87.3% o
Clean train 100% 100% o N
(I) 5I0 l(l)() I;O 2(I)0
Epochs
The test and train performance of clean and adversarial The learning curves of adversarial

training on CIFAR 10 [Raghunathan et al, 2019] training on CIFAR 10 [Rice et al, 2020]



Questions

Why does there exist such a large generalization gap in the context of
robust learning? Can we provide a theoretical understanding of this

puzzling phenomena?




Key Observation

‘ Fact Data are far from each other.

adversarial minimum minimum

perturbation  Train-Train  Test-Train

3 separation  separation
MNIST 0.1 0.737 0.812
CIFAR-10 0.031 0.212 0.220
SVHN 0.031 0.094 0.110
ResImageNet 0.005 0.180 0.224

Experiment results about data separation in [Yang et al, 2020]



Understand Robust Generalization Gap via Representation Complexity

Assumption (Separated Data Distribution)

Let D be the binary-labeled data distribution, where data points are in
two sets 4, B < [0,1]%. We assume that separation d(4, B) > 2¢e and
the perturbation radius § < e.

* Representation Complexity:
RC({fo}oco) = # params |6

 Under the assumption, we focus on:

* (robust training) For arbitrary N-size training dataset S 1.1.d. sampled from D,
how much representation complexity is enough for ReLU nets to achieve zero
robust training error?

* (robust generalization) For arbitrary data distribution D that satisfies the
assumption, how much representation complexity is enough for ReLU nets to
achieve low robust test error?




O(Nd) Parameters are Enough to Achieve Zero Robust Training Error

Theorem (Upper Bound for Robust Training)

For any given N-size and d-dim training dataset S that satisfies the
separability condition, there exists a ReLU network f with at most
O (Nd) parameters such that robust training error is zero.

 For robust training, ~
RC(ReLU Nets) = O(Nd).

* It Is consistent with the common practice that moderate-size network
trained by adversarial training achieves high robust training accuracy.



There Exists a EXP Large Robust Classifier

Lemma

Under the separability assumption, there exists a robust classifier f~*
such that it can robustly classify the 2¢- separated labeled sets A and B.

. £ __d(x,B)—-d(x,A)
o) = raea

e f*is a e~ 1-Lipschitz function

Theorem
There exists a ReLU net f with at
most O (exp(d)) params such that | * Corollary: For robust generalization,

If — f*| = o(1) for all x € [0,1]¢. RC(ReLU Nets) = 0(exp(d)).




Robust Generalization Requires Exponentially Large Models

* Now, we present our main result in this paper.

Theorem (Lower Bound for Robust Generalization)
Let F,, be the family of function represented by ReLU nets with at most
m parameters. Then, there exists a number m(d) = 2(exp(d)) and a

linear-separable distribution D satisfying the assumption such that, for
any classifier in Fp, 4, the robust test error Is at least Q(1).

 For robust generalization,
RC(ReLU Nets) = Q(exp(d)),
In contrast, for ,only O(d) params are enough.

* Moreover, this lower bound holds for arbitrarily small perturbation
radius and general models as long as VCDim = O(poly(#params)).



Robust Generalization for Low-dimensional-manifold Data

« A common belief of real-life data such as images Is that the data points
lie on a low-dimensional manifold.

Assumption (Manifold Data)
We assume that data lies on a manifold M with the intrinsic dimension k
(k << d), where data points are in two separated labeled sets A,B € M.

High dimensional ambient space

() :
onlinéar mapping

Theorem (Improved Upper Bound)
Under the manifold-data assumption,
there exists a ReLU net with at most

O (exp(k)) params such that the robust
test error on the manifold is zero.

L.ow dimensional manifold

space




Conclusion

Take Home Message: From the view of representation complexity,
(1) Robust training only needs linearly large models;
(2) Robust generalization, in worst case, requires EXP larger models.

Table 1: Summary of our main results.

Setting
Params Robust Trainin Robust Generalization
‘ € [General Case | Linear Separable | £—dim Manifold
O(Nd) exp(O(d)) exp(O(k))
Upper Bound (Thm 2.2 (Thm 3.3) (Thm 5.5)
Q(VNd) exp(92(d)) exp(2(d)) exp(Q(k))
Lower Bound | . 5 3 (Thm 3.4) (Thm 4.3) (Thm 5.8)




Discussion

« Beyond Worst Case: For a specific data distribution, how much
representation complexity is enough for networks to achieve

robustness?
* Practical Architecture: V.S. VIT V.S.

» Gradient-based Method: Can gradient methods provably learn robust
or non-robust networks?



Outline

* Theoretical Understanding of Adversarial Examples:

2. Perspective of Training Dynamics (Feature Learning Theory)

a) Gradient Descent Provably Converges to Non-Robust Solutions



Feature Averaging: An Implicit Bias of Gradient Descent
Leading to Non-Robustness in Neural Networkst

Binghui Li Zhixuan Pan Kaifeng Lyu Jian Li

1The first two authors have equal contributions and the last author is the corresponding author.
2Qur full paper can be found at https://arxiv.org/abs/2410.10322 .



https://arxiv.org/abs/2410.10322

Question

Our Fundamental Theoretical Questions :
Why do neural networks trained by gradient descent algorithm converge to the
non-robust solutions that fail to classify adversarial examples?

actually exists.

{ Robust classifier

However, GD finds
non-robust solutions.




Data Distribution

» Data distribution Dy;pq,y On R? x {—1,1} that consists of k clusters:
« for each cluster, it corresponds to a cluster feature vector u; (i € [k]) ;

« u; for all i € [k] are orthogonal and |||, = ©(Vd);

 Suppose that total k clusters can be divide into two disjoint classes with index
sets /, and J_ that correspond to positive class and negative class, respectively;
1]+

» positive and negative clusters are balanced: 3¢ > 1,¢7! < TR <c.

* An instance (x, y) sampled from cluster i: J+ = {13}

e labely=1ifiej,andy=—-11fi €J_; . J- ={24}
* datainput x = p; + ¢, e .
where random noise é~N(0,0%1;) and o = 0(1). Y% U3

Anexamplefork = 4,c =1

The similar data distribution is analyzed in [Frei et al, 2024].



|_earner Model: Two-Layer ReLLU Network

« Two-layer RelLLU network: for simplicity, we fix the second layer.

1 1
f@ (x) — EZre[m] ReLU(<W1,r»x> + bl,r)' Ezre[m] ReLU(<W—1,r'x> + b—l,r)1

where 6 = {wy r, b } (s re{1,-1)x[m] are trainable parameters.

« Loss function: we apply logistic loss as L(0) = % =1 L(Vife(xi)), where
[(z) ==log(1+ e~ ?%).

« Initialization: WS(,?)~N(O, 0lly), 02 = % and bs(g,)va(O, of), of =

1
E.
« Gradient descent algorithm: 6,,, = 6, —nVgL(6,) with small learning rate

n=0(%).



Clean Accuracy and Robust Accuracy

» For a given data distribution D over R% x {1}, the clean accuracy of a neural
network f3: R% — R on D is defined as

ACCclean(fH) — [P)(x,y)~D [Sgn(fe (x)) — Y]-

* In this work, we focus on the l,-robustness. The [, §-robust accuracy of fg on D
Is defined as

Accfobust(fé?; 5) = IP)(x,y)va [Vp € Bs: Sgn(fH (x + ,0)) — y]»
where Bs := {p € R%: ||p|| < 6} is the [, -ball centered at the origin with radius &.

 \WWe say that a neural network fy is §-robust if ACCrObuSt(fg, 6)=1—¢€(d) for
some function e(d) that vanishes to zero, i.e., e(d) - 0as d —



There Exists the Robust Solution!

* Indeed, It Is easy to show a robust solution exists

with robust radius 0 (Vd):

e Let each neuron deal with one cluster:;
» Use the bias term to filter out intra/inter cluster noise.

Uz
frobust(X) = 2 ReLU((uj,x) + bj+) — 2 ReLU({u;, x) + b;”) Anexamplefork =4,c=1
j€l+ | Y T Y o Vi#E g |lw -, = 0(Vd)

deal with positive cluster j deal with negative cluster [

frobust achieves
optimal robustness.




GD Provably Learns Averaged Features

« Lemma (Weight Decomposition). During training, we can decompose the weight w (
linear combination of the features (and some noise):

(t) (0)
z r]'u] z r]'u] Z ST‘l

JEJ+ JEJ-

)

« Theorem (Feature Averaging). For sufficiently large d, suppose we train the model using the
gradient descent. After T = ©(poly(d)) iterations, with high probability over the sampled
training dataset S, the weights of model f 4(r) satisfy:

» The model achieves perfect standard accuracy: P (x y)~Dpinary [sgn (f o(T) (x)) = yl =1-o0(1).
» GD learns averaged features:

(T)
(M) (7) Asi.j |
Agri = > 0(1), Al < o0(1), < 0(1), vse{—-1,1},r € |m],j +# k € J,.
J S,1,] A(T)
\ J ] ek
Y Y \ Y / Intuitively, it approximately satisfies:
Large coeffs for Small coeffs for No large coeff is W & Z uj,v(s,r) € {—1,1} x [m]
the same class the other class much than others 75

J




Averaged Features are Non-robust Features

Theorem. For the weights in a feature-averaging solution, for any choice of bias b,
the model has nearly zero 6-robust accuracy for perturbation radius 6 = Q.(,/d /k).

(Recall that a robust solution exists with robust radius 0 (+/d))

Intuition: for averaged features, the model approximately degenerates into a two-
neuron network as follows,

fo(x) = C(ReLU((X e, ), x) + by) - ReLU(Z jej_ k%) +b-))
\ Y ) \ Y ) OQ Q YN TN N £
deal with all positive clusters deal with all negative clusters U UU U

frobust

[ In fact, the attack can be chosenas € o< — ., 1; + e, K;




Detailed Feature-Level Supervisory Label

* One can show if one is provided detailed feature level label, some two-layer ReLU network
can learn feature-decoupled solutions, which is provably more robust.

Kl'heorem (Multiple-Info Helps Learning Feature-Decoupled Solutions). By given all cluster \
Information for each data point, we can apply the standard gradient descent algorithm to solve
the corresponding k-classification task, and we will derive the following multiple classifier

F(x) = (fi,....fr): R* - R, where f;(x) == ReLU({w;, x)), which satisfies

: Wl-(t) = Wl-(o) + ek Ag,tj)#j + Yien Ui(,?fz

\_* After T = @(poly(d)), it holds that A =), 47 = o(1), Vi € [k],j € [k]\{i}. .

e Comments: Human is more robust to small perturbations.
 No adv training for human.
 Adv training is slow (can we used std training to get a robust model?)
» More detailed and structured supervisory information for human.
« Such labeling in large scale is possible in the era of multi-model LLMSs.



Real-World Experiments

Each element in the matrix located at position We create binary classification tasks from the MNIST and
(i,j) is the average cosine value of the angle CIFAR10 datasets:
between the weight vector of i-th neuron and * Red: binary classifier trained by 2-classification task.
the feature vector u; of the j-th feature. » Blue: binary classifier trained by 10-classification task.
- - ~MNIST ) CIFAR-10 B
: =0.05 : 0.0 i o o
g S & E e ] e E € : " “Pertu;l;ationll-'zadius“s - " 08Pertunit;ationzliadius32 "

Figure 1: Illustration of Feature Averaging and Feature Decoupling Figure 2: Robustness Improvement on MNIST and CIFAR10 .




Take-Home Messages

« Message |: Adversarial examples may stem from averaged features learned
by GD.

* Message Il: More detailed/ structured supervisory information helps
achieving models with better robustness.

My = (U4 T T Hs3)/3, J+ ={1,2,3},]- = {45}, k =5,

Uy = (Ut pp + p3)/3,
Ho = (U + Hg)/2

G ., = 3ReLU((u., x)) — 2ReLU({u_, x))

! pe fep:=hth+tfh—fa—Tfs
p = (Hy + ps)/2 fj(x): = ReLU((uj,x) + b;).j € [5]




Discussion

* Regarding Data Assumption: Indeed, multi-cluster data is a feature-
level-structure. Can we consider another data assumption?

* Regarding Robust Learning Algorithm: Can we design an
algorithm that provably improves the network robustness?



Outline

* Theoretical Understanding of Adversarial Examples:

2. Perspective of Training Dynamics (Feature Learning Theory)

b) Adversarial Training Provably Improves Models’ Robustness



Adversarial Training Can Provably Improve
Robustness: Theoretical Analysis of Feature Learning
Process Under Structured Datal~

Binghui Li Yuanzhi Li

1This work has been accepted by NeurlIPS 2024 M3L Workshop.
2Qur full paper can be found at https://arxiv.org/abs/2410.08503 .
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Our Fundamental Theoretical Questions :

Q1: Why do neural networks trained by standard training converge to
the non-robust solutions that fail to classify adversarial examples?

Q2: How does adversarial training algorithm help optimizing neural
networks to improve their robustness against adversarial perturbation?




Robust and Non-robust Feature Decomposition

« A common challenge in analyzing adversarial training is the gap between theory and practice.

* To establish a realistic data model, we divide images into two types of features by reconstruction
[llyas et al, 2019]. Specifically, we solve the optimization problem: myin”G(X) - G|,

« Where X is some original image, X is initialized by random noise, and G denotes the mapping from
Input to the representation layer for networks (a neural network without the last FNN layer).

 When G i1s chosen from a Std/Adyv trained network, we derive the non-robust/robust features.

Robust dataset

g good standard accuracy
< good robust accuracy
D
2 S =
Unmodified
) test set

Cat

Training image

good standard accuracy
bad robust accuracy

-
Semanlically-Alignedw [ Noise-Like ]
N S,

\ Robust Features on-Robust Feature

frog

Non-robust dataset



Patch-Structured Data Model

Here, we mathematically represent this concept via the patch-structured data [Allen-Zhu and Li, 2023].
We consider a multiple classification task with k classes. For each class y € [k], we assume that there

exists a robust feature upy and a non-robust feature v,,. Then, our patch data Is represented by X =
(X1, X3, ..., xp) € (RH)F and label y € [k]. And for each p € [P], the corresponding patch vector is

generated as

R {Ofp'“’yTL&pa ifp € Jr
P ﬁpvy + ‘spa ifp € jNR

(robust-feature patch)
(non-robust-feature patch)

where o, 3, > 0 are the random coefficients sampled from the distribution D,, ,, D3,

respectively, and £, ~ N(0,02Z,) is the random Gaussian noise with variance o>-.

Adv Perturbation A (||4]|. < €)

Adv Example X (= X + A)

Original Data (X, y)
Bv+§ Bv+§, au+§; v’ — Bv &' —B,v 0 ' +§, ' +§, au+§;
au+§, azu+§; Bv+ &, B 0 0 v —Bv | au+§, azu+§: ' +§&,
. -
Bv+§; | Bsv+8s | B+ V' —B;v | V' —Bgv | V' —Bov ' +§; V' + &5 ' + &

Adversarial Attack

p=—* Robust-Feature Patch Class y corresponds two featuresw,v

Class y' corresponds two features u’,v’

=== Non-Robust-Feature Patch It satisfies that: @z 45 > & = Pr2s789 = IE1-sll2

T Adversarial Example Arises

From Non-Robust Features!

2

ﬁ)ata Assumption \

1. Robust feature is stronger than
non-robust feature:

V(p, pf) € jf\’ X jNRa“’-p > /j)'p’-

2. Non-robust feature is denser
than robust feature:

a7 = O’ZPEJR C}i; < ZPEJ\'R 3;’-

\_ %




Network Learner

» Two-Layer Convolutional Neural Network: For the k-class classification
task, we consider the following two- Iayer convolutional neural network as

F(X) = (F,(X), F,(X), ..., F(X)): (Rd) — R¥, and F;(X) denotes

Fy(X) = z Z ReLU(< Wiy, %, >)
re[m] pe[P]

- Where ReLU denotes smoothed ReLU activation function, and {w; .} are
learnable weights for different convolutional filters.

* Robust Feature Learning: max,epm) < Wi, U; >
* Non-Robust Feature Learning: max,epm) < Wi, v; >



Main Result I: Non-Robust Feature Learning
Dominates During Standard Training

ﬁ heorem 1 (Standard Training Converges to Non-robust Global Mini@
Under our framework, we prove that two-layer neural network trained by
standard training from random initialization satisfies:
 Standard training is perfect.
* Non-robust features are learned well, I.e.
MaXrepm] < Wi, Vi > > MaXreim] < Wir, U >

for each classi € [k].
 Standard test accuracy Is good.
* Robust test accuracy Is bad, even for model-independent perturbations

Kthat are generated by non-robust features. /




Main Result I1: Adversarial Training Provably
Helps Robust Feature Learning

/I' heorem 2 (Adversarial Training Converges to Robust Global Minima).
Under our framework, we prove that two-layer neural network trained by
adversarial training from random initialization satisfies:
 Adversarial training is perfect.
* Robust features are learned well, I.e.
maxre[m] < wi’r,ui > > maxre[m] < wi’r,vi >

for each class i € [k].

 Standard test accuracy Is good.

k Robust test accuracy Is also good. /




Simulation Experiments on Synthetic Data

Adv Train

Std Train

Adv Train

5

max, e m; (W; . A/ fiz

Rl
5l 5§55
§

Y

N
|
5538

Accuracy

513355

Standard Test Acc
Robust Test Acc

Accuracy

Standard Test Acc
Robust Test Acc

Std Train
N - e 2
-~ E
= /
[ II
Lo
B
- 0.
£ —— Wir=Wir,
(TR l / :
>E ‘ Wi r=wzar
g 0. | —— Wir=war.
i’ Wi r= Wz r.
0
° 20 <00 <00 1=
Epoch

Epoch

Epoch

w%pocﬁu

Figure 3: Simulation Experiments on Synthetic Datasets. The two figures on the left: dynamics
of normalized weight-feature correlations for standard/adversarial training. The two figures on
the right: learning curves for standard/adversarial training. We observe that, in standard training,
non-robust feature learning (measured by max, ¢, (w; ., v;)/||v;||2) dominates during training
process. There exists a phase transition during adversarial training (it happens nearly at 150-epoch).
At Phase I: the network learner mainly learns non-robust features to achieve perfect standard test
accuracy, but robust test accuracy maintains zero. At Phase II: the increments of non-robust feature
learning is restrained while robust feature learning and robust test accuracy start to increase fast.



Experiments: Feature Learning Process on Real Images
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Experiments: Adversarial Examples Arise From Non-Robust Features

Table 2: Targeted Attack on CIFAR10

Model Attack Cat — Dog Dog — Cat | Car — Plane | Plane — Car
Std Train NRF-PGD | 71.41 & 1.17 | 80.36 £0.28 | 54.08 £0.99 | 76.74 = 0.77
RF-PGD | 11.30£0.55 | 958 +=0.58 | 1.244+0.10 | 2.63 £0.13

Adv Train NRF-PGD | 9.60+0.18 | 15.16 £0.23 | 0.34+£0.04 | 0.40 = 0.00
RF-PGD | 19.38 £0.29 | 26.00 = 0.67 | 2.64 £0.18 1.96 = 0.13

* NRF-PGD: Adversarial attacks from non-robust features.
« RF-PGD: Adversarial attacks from robust features.




Take-Home Messages

Robust/Non-Robust Feature Decomposition ]

— Good Standard Accuracy
= Bad Robust Accuracy
B
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Outline

« Discussion on the Future of Adversarial Examples



Discussion

* In practice, adversarial robustness highlights the gap between machine
and human vision (alignment).

* In theory, the robustness of neural network is a fundamental theoretical
Issue, which helps us understand what neural network learns in deep
learning (feature learning).



Thanks for listening!

My Homepage Robust Generalization Feature Averaging Adversarial Training
Paper Paper Paper



Reference |

« Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I.
and Fergus, R. (2013). Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199.

« Madry, A., Makelov, A., Schmidt, L., Tsipras, D. and Vladu, A. (2018).
Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations.

 Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., & Liang, P. (2019).
Adversarial tralnlng can hurt generallzatlon arXiv preprlnt
arXiv:1906.06032.

* Rice, L., Wong, E., & Kolter, Z. (2020, November). Overfitting in
adversarially robust deep learning. In International conference on machine

learning (pp. 8093-8104). PMLR.



Reference ||

* Yang, Y. Y., Rashtchian, C., Zhang, H., Salakhutdinov, R. R., & Chaudhurt,
K. (2020). A closer look at accuracy vs. robustness. Advances in neural
Information processing systems, 33, 8588-8601.

e Li, B., Jin, J., Zhong, H., Hopcroft, J., & Wang, L. (2022). Why robust
generalization in deep learning is difficult: Perspective of expressive power.
Advances in Neural Information Processing Systems, 35, 4370-4384.

* Frel, S., Vardi, G., Bartlett, P. and Srebro, N. (2024). The double-edged
sword of implicit bias: Generalization vs. robustness in relu networks.
Advances in Neural Information Processing Systems, 36.

 Li, B,, Pan, Z., Lyu, K., & L1, J. (2024). Feature Averaging: An Implicit
Bias of Gradient Descent Leading to Non-Robustness in Neural Networks.
arXiv preprint arXiv:2410.10322.



Reference 111

* llyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B. and Madry,
A. (2019). Adversarial examples are not bugs, they are features.
Advances in neural information processing systems, 32.

 Allen-Zhu, Z. and L1, Y. (2023). Towards understanding ensemble,
knowledge distillation and self-distillation in deep learning. In The
Eleventh International Conference on Learning Representations.

* LI, B., & LI, Y. (2024). Adversarial Training Can Provably Improve
Robustness: Theoretical Analysis of Feature Learning Process Under
Structured Data. arXiv preprint arXiv:2410.08503.



	幻灯片 1: Theoretical Understanding of Adversarial Examples: Expressive Power and Training Dynamics
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: Deep Learning
	幻灯片 5: Deep Neural Network
	幻灯片 6: Train Deep Model via Gradient Descent Method
	幻灯片 7: Adversarial Examples
	幻灯片 8: Improve Robustness via Adversarial Training
	幻灯片 9: Overview
	幻灯片 10: Outline
	幻灯片 11: Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power 1,2 
	幻灯片 12: Robust Generalization Gap is Large!
	幻灯片 13
	幻灯片 14: Key Observation
	幻灯片 15: Understand Robust Generalization Gap via Representation Complexity
	幻灯片 16: 加粗斜体 大写 O tilde 左圆括号 加粗斜体 大写 N 加粗斜体 d 右圆括号  Parameters are Enough to Achieve Zero Robust Training Error
	幻灯片 17: There Exists a EXP Large Robust Classifier
	幻灯片 18: Robust Generalization Requires Exponentially Large Models
	幻灯片 19: Robust Generalization for Low-dimensional-manifold Data 
	幻灯片 20: Conclusion
	幻灯片 21: Discussion
	幻灯片 22: Outline
	幻灯片 23: Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks1,2
	幻灯片 24: Question
	幻灯片 25: Data Distribution
	幻灯片 26: Learner Model: Two-Layer ReLU Network
	幻灯片 27: Clean Accuracy and Robust Accuracy
	幻灯片 28: There Exists the Robust Solution!
	幻灯片 29: GD Provably Learns Averaged Features
	幻灯片 30: Averaged Features are Non-robust Features
	幻灯片 31: Detailed Feature-Level Supervisory Label
	幻灯片 32: Real-World Experiments
	幻灯片 33: Take-Home Messages
	幻灯片 34: Discussion
	幻灯片 35: Outline
	幻灯片 36: Adversarial Training Can Provably Improve  Robustness: Theoretical Analysis of Feature Learning  Process Under Structured Data1,2 
	幻灯片 37
	幻灯片 38: Robust and Non-robust Feature Decomposition
	幻灯片 39: Patch-Structured Data Model
	幻灯片 40: Network Learner
	幻灯片 41: Main Result I: Non-Robust Feature Learning Dominates During Standard Training
	幻灯片 42: Main Result II: Adversarial Training Provably Helps Robust Feature Learning
	幻灯片 43: Simulation Experiments on Synthetic Data
	幻灯片 44: Experiments: Feature Learning Process on Real Images
	幻灯片 45: Experiments: Adversarial Examples Arise From Non-Robust Features
	幻灯片 46: Take-Home Messages
	幻灯片 47: Outline
	幻灯片 48: Discussion
	幻灯片 49:    Thanks for listening!   
	幻灯片 50: Reference I
	幻灯片 51: Reference II
	幻灯片 52: Reference III

