Why Robust Generalization in Deep Learning is Difficult:
Perspective of Expressive Power 17

Binghui Li
Peking University

Binghui Li Jikai Jin Han Zhong John Hopcroft Liwei Wang

l 1This work has been accepted by NeurlPS 2022.
2Qur full paper can be found at https://arxiv.org/abs/2205.13863 .



https://arxiv.org/abs/2205.13863

Deep Learning

 Nowadays, deep learning has achieved remarkable success in a variety of disciplines
including cormp 1, natl juag , multi-agent decision making as
well as scientific and engineering applications.
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Deep Neural Network

« A multilayer neural network is a function from input x € R¢ to output y € R™,
recursively defined as follows:

h =0 (Wix + b)), W;eR™* b € R™,
hy =0 (Wh_1+ b)), W,cR™*M-1 b cR™2<¢<—1,
y=Wh +b, W cR™™ b c¢R™,

where ¢ 1s the activation function and L 1s the depth of the neural network. Here, we
mainly focus on ReLU nets 1.€. 6(x) = max{0, x}.
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Train Deep Model via Gradient Descent

 Data: we consider a binary classification task: X - Y € {—1, +1}, and let D be the data
distributionon X X Y.

» Model: parameterized neural network classifier: {f5}gco-
 Objective: we evaluate the classification performance by the test loss:
L(0) = Exyy~p[L(fo(x), ¥)],
where L(-,-) denotes loss function, e.g. MSE-loss: L(z,y) = (z — y)?, 0-1loss:I{z = y}.

In practice, we use empirical average loss on training dataset S = {(x1, y1), ..., (Xn, Yn)}

Instead of the test loss: .

~ 1
L(0) = N _=1L(f9(xi)»%')-

» Training Algorithm: we use gradient descent to minimize the training loss L(0) :
6«6 —nVyeL(0),
where 1 Is learning rate.



Adversarial Examples

« Although deep neural networks have achieved remarkable success in practice, it is
well-known that modern neural networks are vulnerable to adversarial examples.

« Specifically, for a given image X, an indistinguishable small but adversarial
perturbation o is chosen to fool the classifier f to produce a wrong class using
f(x+9).
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An Instance for Aadversarial Example



Adversarial Training

« To mitigate this problem, a common approach is to design adversarial
training algorithms by using adversarial examples as training data.

Concretely, we consider a training
dataset S = {(x1, ¥1), ..., Xy, Yn)J,
and we aim to solve the following

min—max optimization problem:
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Robust Generalization Gap Is Large!

« However, while the state-of-the-art adversarial training methods can
achieve high robust training accuracy, all existing methods suffer from
large robust test error, which is also called robust overfitting.

= Test robust = Test standard

Clean traiming ~ Adversarial training T robust | T sanden
~ 0.8
Robust test 3.5% 45.8% )
Robust train - 100% T e e
Clean test 95.27% 87.3% o
Clean train 100% 100% - —
(I) SIO l(l)() 1;0 2(I)0
Epochs
The test and train performance of clean and The learning curves of adversarial

adversarial training on CIFAR 10 [RXY+19] training on CIFAR 10 [RWK20]



Questions

Why does there exist such a large generalization gap in the context of
robust learning? Can we provide a theoretical understanding of this

puzzling phenomena?




Key Observation

‘ Fact Data are far from each other.

adversarial minimum minimum

perturbation  Train-Train  Test-Train

3 separation  separation
MNIST 0.1 0.737 0.812
CIFAR-10 0.031 0.212 0.220
SVHN 0.031 0.094 0.110
ResImageNet 0.005 0.180 0.224

Experiment results about data separation in [YRZ+20].



Understand Robust Generalization Gap via Representation Complexity

Assumption (Separated Data Distribution)

Let D be the binary-labeled data distribution, where data points are in
two sets 4, B < [0,1]%. We assume that separation d(4, B) > 2¢e and
the perturbation radius § < e.

* Representation Complexity:
RC({fo}oco) = # params |6

 Under the assumption, we focus on:

* (robust training) For arbitrary N-size training dataset S 1.1.d. sampled from D,
how much representation complexity is enough for ReLU nets to achieve zero
robust training error?

* (robust generalization) For arbitrary data distribution D that satisfies the
assumption, how much representation complexity is enough for ReLU nets to
achieve low robust test error?




O(Nd) Parameters are Enough to Achieve Zero Robust Training Error

Theorem (Upper Bound for Robust Training)

For any given N-size and d-dim training dataset S that satisfies the
separability condition, there exists a ReLU network f with at most
O (Nd) parameters such that robust training error is zero.

 For robust training, ~
RC(ReLU Nets) = O(Nd).

* It Is consistent with the common practice that moderate-size network
trained by adversarial training achieves high robust training accuracy.



There Exists a EXP Large Robust Classifier

Lemma

Under the separability assumption, there exists a robust classifier f~*
such that it can robustly classify the 2¢- separated labeled sets A and B.

. £ __d(x,B)—-d(x,A)
o) = raea

e f*is a e~ 1-Lipschitz function

Theorem
There exists a ReLU net f with at
most O (exp(d)) params such that | * Corollary: For robust generalization,

If — f*| = o(1) for all x € [0,1]¢. RC(ReLU Nets) = 0(exp(d)).




Robust Generalization Requires Exponentially Large Models

* Now, we present our main result in this paper.

Theorem (Lower Bound for Robust Generalization)
Let F,, be the family of function represented by ReLU nets with at most
m parameters. Then, there exists a number m(d) = 2(exp(d)) and a

linear-separable distribution D satisfying the assumption such that, for
any classifier in Fp, 4, the robust test error Is at least Q(1).

 For robust generalization,
RC(ReLU Nets) = Q(exp(d)),
In contrast, for ,only O(d) params are enough.

* Moreover, this lower bound holds for arbitrarily small perturbation
radius and general models as long as VCDim = O(poly(#params)).



Robust Generalization for Low-dimensional-manifold Data

« A common belief of real-life data such as images Is that the data points
lie on a low-dimensional manifold.

Assumption (Manifold Data)
We assume that data lies on a manifold M with the intrinsic dimension k
(k << d), where data points are in two separated labeled sets A,B € M.

High dimensional ambient space

() :
onlinéar mapping

Theorem (Improved Upper Bound)
Under the manifold-data assumption,
there exists a ReLU net with at most

O (exp(k)) params such that the robust
test error on the manifold is zero.

L.ow dimensional manifold

space




Conclusion

Take Home Message: From the view of representation complexity,
(1) Robust training only needs linearly large models;
(2) Robust generalization, in worst case, requires EXP larger models.

Table 1: Summary of our main results.

Setting
Params Robust Trainin Robust Generalization
‘ € ["General Case | Linear Separable | £—dim Manifold
O(Nd) exp(O(d)) exp(O(k))
Upper Bound (Thm 2.2 (Thm 3.3) (Thm 5.5)
Q(vVNd) exp(£2(d)) exp(£2(d)) exp(£2(k))
Lower Bound | . 5 3 (Thm 3.4) (Thm 4.3) (Thm 5.8)




Thanks for listening!

Our full paper can be found at:
https://arxiv.org/abs/2205.13863
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