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Deep Learning
• Nowadays, deep learning has achieved remarkable success in a variety of disciplines 

including computer vision, natural language processing, multi-agent decision making as 
well as scientific and engineering applications. 

• Deep Learning ≈ Deep Neural Network

Powerful Expressivity

+ Gradient Descent Method
Efficient Opt Alg

SAM ChatGPT AlphaStar



Deep Neural Network

• A multilayer neural network is a function from input 𝒙 ∈ ℝ𝑑 to output 𝒚 ∈ ℝ𝑚, 
recursively defined as follows:

where σ is the (non-linear) activation function and L is the depth of the neural 
network. Here, we mainly focus on ReLU nets i.e. σ(x) = max{0, x}.



Train Deep Model via Gradient Descent Method
• Data: we consider a binary classification task: 𝑋 → 𝑌 ∈ {−1,+1}, and let 𝐷 be the data 

distribution on 𝑋 × 𝑌.

• Model: parameterized neural network classifier: {𝑓𝜃}𝜃∈Θ.

• Objective: we evaluate the classification performance by the test loss:

𝐿 𝜃 ≔ 𝔼(𝑥,𝑦)~𝐷[𝑙 𝑓𝜃 𝑥 , 𝑦 ],

where 𝑙(∙,∙) denotes loss function, e.g. MSE-loss: 𝑙 𝑧, 𝑦 ≔ (𝑧 − 𝑦)2, 0-1loss:𝕀{𝑧 ≠ 𝑦}.

• In practice, we aim to minimize the empirical risk (ERM) on training dataset 𝑆 ≔
𝑥1, 𝑦1 , … , 𝑥𝑁 , 𝑦𝑁  i.i.d. sampled from population 𝐷 instead of the test loss:

min
𝜃∈Θ

෠𝐿 𝜃 ≔
1

𝑁
෍

𝑖=1

𝑁

𝑙 𝑓𝜃 𝑥𝑖 , 𝑦𝑖 .

• Training Algorithm: we use gradient descent (GD) to minimize the training loss ෠𝐿 𝜃 :

𝜃 ← 𝜃 − 𝜂∇𝜃 ෠𝐿 𝜃  ,

where 𝜂 is learning rate.



Adversarial Examples

• Although deep neural networks have achieved remarkable success in practice, it is 
well-known that modern neural networks are vulnerable to adversarial examples. 

• Specifically, for a given image x, an indistinguishable small but adversarial 
perturbation δ is chosen to fool the classifier f to produce a wrong class using        
f (x + δ) [Szegedy et al, 2013]. 

An Instance for Adversarial Example



Improve Robustness via Adversarial Training

• To mitigate this problem, a common approach is to design adversarial 
training algorithms [Madry et al, 2018] by using adversarial examples 
as training data.

• Networks trained using adversarial training are significantly more 
robust than those trained using the standard gradient descent algorithm.

Concretely, we consider a training 

dataset 𝑆 = 𝑥1, 𝑦1 , … , 𝑥𝑁 , 𝑦𝑁 ,

and we aim to solve the following

min−max optimization problem：

min
𝜃∈Θ

1

𝑁
෍

𝑖=1

𝑁

max
𝛿 ≤𝜀

𝐿(𝑓𝜃 𝑥𝑖 + 𝛿 , 𝑦𝑖)



Overview

In this talk, we mainly provide a comprehensive theoretical 

understanding of adversarial examples from two perspectives: 

expressive power and training dynamics. 

Paper List:

1. Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power 

2. Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural 

Networks



Why Robust Generalization in Deep Learning is Difficult: 
Perspective of Expressive Power 1,2

1This work has been accepted by NeurIPS 2022, where the first two authors have equal contributions 

and the last author is the corresponding author.
2Our full paper can be found at https://arxiv.org/abs/2205.13863 .

Binghui Li Jikai Jin Han Zhong John Hopcroft Liwei Wang

https://arxiv.org/abs/2205.13863


Robust Generalization Gap is Large!

• However, while the state-of-the-art adversarial training methods can 
achieve high robust training accuracy, all existing methods suffer from 
large robust test error, which is also called robust overfitting.

The learning curves of adversarial 

training on CIFAR 10 [Rice et al, 2020]

The test and train performance of clean and adversarial 

training on CIFAR 10 [Raghunathan et al, 2019]



Questions

Why does there exist such a large generalization gap in the context of 

robust learning? Can we provide a theoretical understanding of this 

puzzling phenomena?



Key Observation

Fact Data are far from each other.

Experiment results about data separation in [Yang et al, 2020]



Understand Robust Generalization Gap via Representation Complexity

• Representation Complexity:
𝑅𝐶( 𝑓𝜃}𝜃∈Θ = # 𝑝𝑎𝑟𝑎𝑚𝑠 |𝜃|

• Under the assumption, we focus on:

• (robust training) For arbitrary 𝑁-size training dataset S i.i.d. sampled from 𝐷, 
how much representation complexity is enough for ReLU nets to achieve zero 
robust training error?

• (robust generalization) For arbitrary data distribution 𝐷 that satisfies the 
assumption, how much representation complexity is enough for ReLU nets to 
achieve low robust test error?

Assumption (Separated Data Distribution)

Let 𝐷 be the binary-labeled data distribution, where data points are in 

two sets 𝐴, 𝐵 ⊂ [0,1]𝑑. We assume that separation 𝑑 𝐴, 𝐵 ≥ 2𝜖 and 

the perturbation radius 𝛿 < 𝜖.



෩𝑶(𝑵𝒅) Parameters are Enough to Achieve Zero Robust Training Error

• For robust training,
𝑅𝐶 𝑅𝑒𝐿𝑈 𝑁𝑒𝑡𝑠 = ෨𝑂 𝑁𝑑 .

• It is consistent with the common practice that moderate-size network 
trained by adversarial training achieves high robust training accuracy.

Theorem (Upper Bound for Robust Training)

For any given 𝑁-size and 𝑑-dim training dataset 𝑆 that satisfies the 

separability condition, there exists a ReLU network 𝑓 with at most 
෨𝑂(𝑁𝑑) parameters such that robust training error is zero.



There Exists a EXP Large Robust Classifier

• 𝑓∗ 𝑥 =
𝑑 𝑥,𝐵 −𝑑 𝑥,𝐴

𝑑 𝑥,𝐵 +𝑑 𝑥,𝐴

• 𝑓∗ is a 𝜖−1-Lipschitz function

Lemma

Under the separability assumption, there exists a robust classifier 𝑓∗

such that it can robustly classify the 2𝜖- separated labeled sets 𝐴 and 𝐵. 

Theorem

There exists a ReLU net 𝑓 with at 

most 𝑂(𝑒𝑥𝑝 𝑑 ) params such that 

𝑓 − 𝑓∗ = 𝑜(1) for all 𝑥 ∈ [0,1]𝑑.

• Corollary: For robust generalization,

𝑅𝐶 𝑅𝑒𝐿𝑈 𝑁𝑒𝑡𝑠 = 𝑂(exp 𝑑 ).



Robust Generalization Requires Exponentially Large Models

• Now, we present our main result in this paper.

• For robust generalization,
𝑅𝐶 𝑅𝑒𝐿𝑈 𝑁𝑒𝑡𝑠 = Ω exp 𝑑 ,

in contrast, for standard generalization, only 𝑂(𝑑) params are enough.

• Moreover, this lower bound holds for arbitrarily small perturbation 
radius and general models as long as 𝑉𝐶𝐷𝑖𝑚 = 𝑂(𝑝𝑜𝑙𝑦 #𝑝𝑎𝑟𝑎𝑚𝑠 ).

Theorem (Lower Bound for Robust Generalization)

Let 𝐹𝑚 be the family of function represented by ReLU nets with at most 

m parameters. Then, there exists a number 𝑚 𝑑 = 𝛺(𝑒𝑥𝑝 𝑑 ) and a 

linear-separable distribution 𝐷 satisfying the assumption such that, for 

any classifier in 𝐹𝑚(𝑑), the robust test error is at least Ω(1).



Robust Generalization for Low-dimensional-manifold Data 

• A common belief of real-life data such as images is that the data points 
lie on a low-dimensional manifold. 

Assumption (Manifold Data)

We assume that data lies on a manifold M with the intrinsic dimension k 

(k ≪ d), where data points are in two separated labeled sets 𝐴, 𝐵 ⊂ 𝑀.

Theorem (Improved Upper Bound)

Under the manifold-data assumption, 

there exists a ReLU net with at most 
෨𝑂(exp 𝑘 ) params such that the robust 

test error on the manifold is zero.



Conclusion

Take Home Message: From the view of representation complexity,

(1) Robust training only needs linearly large models;

(2) Robust generalization, in worst case, requires EXP larger models.



Discussion

• Beyond Worst Case: For a specific data distribution, how much 
representation complexity is enough for networks to achieve 
robustness?

• Practical Architecture: CNN v.s. ViT v.s. Diffusion Model.

• Gradient-based Method: Can gradient methods provably learn robust 
or non-robust networks?



Feature Averaging: An Implicit Bias of Gradient Descent 
Leading to Non-Robustness in Neural Networks1,2

Binghui Li Zhixuan Pan Kaifeng Lyu Jian Li

1The first two authors have equal contributions and the last author is the corresponding author.
2Our full paper can be found at https://arxiv.org/abs/2410.10322 .

https://arxiv.org/abs/2410.10322


Question

Our Fundamental Theoretical Questions :
Why do neural networks trained by gradient descent algorithm converge to the 

non-robust solutions that fail to classify adversarial examples? 

Robust classifier 

actually exists.

However, GD finds 

non-robust solutions.



Data Distribution

• Data distribution 𝐷𝑏𝑖𝑛𝑎𝑟𝑦 on ℝ𝑑 × {−1,1} that consists of 𝒌 clusters:

• for each cluster, it corresponds to a cluster feature vector 𝜇𝑖 (𝑖 ∈ 𝑘 ) ;

• 𝜇𝑖 for all 𝑖 ∈ 𝑘 are orthogonal and 𝜇𝑖 2 = Θ( 𝑑);

• Suppose that total 𝒌 clusters can be divide into two disjoint classes with index 
sets 𝐽+ and 𝐽− that correspond to positive class and negative class, respectively;

• positive and negative clusters are balanced: ∃𝑐 ≥ 1, 𝑐−1 ≤
𝐽+

𝐽−
≤ 𝑐.

• An instance (𝑥, 𝑦) sampled from cluster 𝑖:
• label 𝑦 = 1 if 𝑖 ∈ 𝐽+ and 𝑦 = −1 if 𝑖 ∈ 𝐽−;

• data input 𝑥 = 𝜇𝑖 + 𝜉, 

where random noise 𝜉~𝑁(0, 𝜎2𝐼𝑑) and 𝜎 = Θ(1).

𝜇1

𝜇2
𝜇3

𝜇4
𝐽+ = {1,3}

𝐽− = {2,4}

An example for 𝑘 = 4, 𝑐 = 1

The similar data distribution is analyzed in [Frei et al, 2024]. 



Learner Model: Two-Layer ReLU Network

• Two-layer ReLU network: for simplicity, we fix the second layer.

𝑓𝜃 𝑥 :=
1

𝑚
σ𝑟∈[𝑚]𝑅𝑒𝐿𝑈( 𝑤1,𝑟 , 𝑥 + 𝑏1,𝑟)-

1

𝑚
σ𝑟∈[𝑚]𝑅𝑒𝐿𝑈( 𝑤−1,𝑟 , 𝑥 + 𝑏−1,𝑟),

where 𝜃 = {𝑤𝑠,𝑟 , 𝑏𝑠,𝑟} 𝑠,𝑟 ∈ 1,−1 ×[𝑚] are trainable parameters.

• Loss function: we apply logistic loss as 𝐿 𝜃 ≔
1

𝑛
σ𝑖=1
𝑛 𝑙(𝑦𝑖𝑓𝜃 𝑥𝑖 ), where 

𝑙 𝑧 ≔ log(1 + 𝑒−𝑧).

• Initialization: 𝑤𝑠,𝑟
(0)
~𝑁(0, 𝜎𝑤

2𝐼𝑑), 𝜎𝑤
2 =

1

𝑑
and 𝑏𝑠,𝑟

(0)
~𝑁(0, 𝜎𝑏

2), 𝜎𝑏
2 =

1

𝑑2
.

• Gradient descent algorithm: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐿(𝜃𝑡) with small learning rate 

𝜂 = Θ(
1

𝑑
).



Clean Accuracy and Robust Accuracy

• For a given data distribution 𝐷 over ℝ𝑑 × {±1}, the clean accuracy of a neural 
network 𝑓𝜃: ℝ

𝑑 → ℝ on 𝐷 is defined as

𝐴𝑐𝑐𝑐𝑙𝑒𝑎𝑛
𝐷 𝑓𝜃 ≔ ℙ 𝑥,𝑦 ~𝐷 sgn 𝑓𝜃 𝑥 = 𝑦 .

• In this work, we focus on the 𝒍𝟐-robustness. The 𝑙2 𝛿-robust accuracy of 𝑓𝜃 on 𝐷
is defined as

𝐴𝑐𝑐𝑟𝑜𝑏𝑢𝑠𝑡
𝐷 𝑓𝜃; 𝛿 ≔ ℙ 𝑥,𝑦 ~𝐷 ∀𝜌 ∈ 𝔹𝛿: sgn 𝑓𝜃 𝑥 + 𝜌 = 𝑦 ,

where 𝔹𝛿 ≔ {𝜌 ∈ ℝ𝑑: 𝜌 ≤ 𝛿} is the 𝑙2 -ball centered at the origin with radius 𝛿.

• We say that a neural network 𝑓𝜃 is 𝜹-robust if 𝐴𝑐𝑐𝑟𝑜𝑏𝑢𝑠𝑡
𝐷 𝑓𝜃; 𝛿 ≥ 1 − 𝜖(𝑑) for 

some function 𝜖(𝑑) that vanishes to zero, i.e., 𝜖 𝑑 → 0 𝑎𝑠 𝑑 → 0 .



There Exists the Robust Solution!

• Indeed, it is easy to show a robust solution exists 

with robust radius 𝑶( 𝒅):
• Let each neuron deal with one cluster;

• Use the bias term to filter out intra/inter cluster noise.

𝑓𝑟𝑜𝑏𝑢𝑠𝑡 𝑥 = ෍

𝑗∈𝐽+

𝑅𝑒𝐿𝑈 𝜇𝑗 , 𝑥 + 𝑏𝑗
+ − ෍

𝑙∈𝐽−

𝑅𝑒𝐿𝑈 𝜇𝑙 , 𝑥 + 𝑏𝑙
+

𝜇1

𝜇2
𝜇3

𝐽− = {2,4}

An example for 𝑘 = 4, 𝑐 = 1

∀𝑖 ≠ 𝑗, 𝜇𝑖 − 𝜇𝑗 2
= Θ( 𝑑)

𝐽+ = {1,3}

deal with positive cluster 𝑗 deal with negative cluster 𝑙

𝑓𝑟𝑜𝑏𝑢𝑠𝑡 achieves 

optimal robustness.



GD Provably Learns Averaged Features
• Lemma (Weight Decomposition). During training, we can decompose the weight 𝑤𝑠,𝑟

(𝑡)
 as 

linear combination of the features (and some noise):

𝑤𝑠,𝑟
(𝑡)

= 𝑤𝑠,𝑟
(0)

+ ෍

𝑗∈𝐽+

𝜆𝑠,𝑟,𝑗
(𝑡)

𝜇𝑗 + ෍

𝑗∈𝐽−

𝜆𝑠,𝑟,𝑗
(𝑡)

𝜇𝑗 + ෍

𝑖∈[𝑛]

𝜎𝑠,𝑟,𝑖
(𝑡)

𝜉𝑖 .

• Theorem (Feature Averaging). For sufficiently large 𝑑, suppose we train the model using the 
gradient descent. After 𝑇 = Θ(𝑝𝑜𝑙𝑦 𝑑 ) iterations, with high probability over the sampled 
training dataset 𝑆, the weights of model 𝑓𝜃(𝑇) satisfy:

• The model achieves perfect standard accuracy: ℙ(𝑥,𝑦)~𝐷𝑏𝑖𝑛𝑎𝑟𝑦 sgn 𝑓𝜃 𝑇 𝑥 = 𝑦 = 1 − 𝑜 1 .

• GD learns averaged features:

𝜆𝑠,𝑟,𝑗
(𝑇)

≥ Ω 1 , 𝜆−𝑠,𝑟,𝑗
𝑇

≤ 𝑜 1 ,
𝜆𝑠,𝑟,𝑗
𝑇

𝜆𝑠,𝑟,𝑘
𝑇

≤ 𝑂 1 , ∀𝑠 ∈ −1,1 , 𝑟 ∈ 𝑚 , 𝑗 ≠ 𝑘 ∈ 𝐽𝑠.

Large coeffs for 

the same class

Small coeffs for 

the other class

No large coeff is 

much than others

Intuitively, it approximately satisfies:

𝑤𝑠,𝑟 ∝ ෍

𝑗∈𝐽𝑠

𝜇𝑗 , ∀ 𝑠, 𝑟 ∈ −1,1 × [𝑚]



Averaged Features are Non-robust Features

Theorem. For the weights in a feature-averaging solution, for any choice of bias 𝑏, 

the model has nearly zero 𝛿-robust accuracy for perturbation radius 𝛿 = Ω( 𝑑/𝑘).

(Recall that a robust solution exists with robust radius 𝑂( 𝑑))

Intuition: for averaged features, the model approximately degenerates into a two-
neuron network as follows, 

In fact, the attack can be chosen as 𝜀 ∝ −σ𝑗∈𝐽+
𝜇𝑗 +σ𝑗∈𝐽−

𝜇𝑗

𝑓𝜃(𝑥) ≈ 𝐶(𝑅𝑒𝐿𝑈( σ𝑗∈𝐽+
𝜇𝑗 , 𝑥 + 𝑏+) - 𝑅𝑒𝐿𝑈( σ𝑗∈𝐽−

𝜇𝑗 , 𝑥 +𝑏−))

deal with all positive clusters deal with all negative clusters
𝑓𝜃

𝑓𝑟𝑜𝑏𝑢𝑠𝑡



Detailed Feature-Level Supervisory Label
• One can show if one is provided detailed feature level label, some two-layer ReLU network 

can learn feature-decoupled solutions, which is provably more robust.

Theorem (Multiple-Info Helps Learning Feature-Decoupled Solutions). By given all cluster 
information for each data point, we can apply the standard gradient descent algorithm to solve 
the corresponding 𝑘-classification task, and we will derive the following multiple classifier 
𝐹 𝑥 = (𝑓1,…,𝑓𝑘):ℝ

𝑑 → ℝ𝑘, where 𝑓𝑖 𝑥 ≔ 𝑅𝑒𝐿𝑈( 𝑤𝑖 , 𝑥 ), which satisfies

• 𝑤𝑖
(𝑡)

= 𝑤𝑖
(0)

+ σ𝑗∈[𝑘] 𝜆𝑖,𝑗
(𝑡)
𝜇𝑗 + σ𝑙∈[𝑛]𝜎𝑖,𝑙

(𝑡)
𝜉𝑙

• After 𝑇 = Θ(𝑝𝑜𝑙𝑦 𝑑 ), it holds that: 𝜆𝑖,𝑖
(𝑇)

= Ω 1 , 𝜆𝑖,𝑗
(𝑇)

= 𝑜 1 , ∀𝑖 ∈ 𝑘 , 𝑗 ∈ [𝑘]\{𝑖}.

• Comments: Human is more robust to small perturbations.

• No adv training for human.

• Adv training is slow (can we used std training to get a robust model?)

• More detailed and structured supervisory information for human.

• Such labeling in large scale is possible in the era of multi-model LLMs.



Real-World Experiments

Each element in the matrix located at position 

𝑖, 𝑗 is the average cosine value of the angle 

between the weight vector of 𝑖-th neuron and 

the feature vector 𝜇𝑗 of the 𝑗-th feature.

We create binary classification tasks from the MNIST and 

CIFAR10 datasets:

• Red: binary classifier trained by 2-classification task.

• Blue: binary classifier trained by 10-classification task.



Take-Home Messages

• Message I: Adversarial examples may stem from averaged features learned 
by GD.

• Message II: More detailed/ structured supervisory information helps 
achieving models with better robustness.



Discussion

• In practice, adversarial robustness highlights the gap between machine 
and human vision (alignment).

• In theory, the robustness of neural network is a fundamental theoretical 
issue, which helps us understand what neural network learns in deep 
learning (feature learning).



Thanks for listening! 

My Homepage Robust Generalization 

Paper

Feature Averaging 

Paper
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