
Why Robust Generalization in Deep Learning is Difficult:
Perspective of Expressive Power

Advisor: Liwei Wang
Speaker: Binghui Li

Turing Class
Peking University

Peking University Why Robust Generalization in DL is Difficult 2022/5/31 1 / 35



Outline

1 Introduction

2 Robust Training via Mildly Over-parameterized ReLU Nets

3 Warm Up: Hardness of Robust Generalization

4 Robust Generalization of Linear Separable Data

5 Robust Generalization of Low-dimensional-manifold Data

6 Conclusion

Peking University Why Robust Generalization in DL is Difficult 2022/5/31 2 / 35



Table of Contents

1 Introduction

2 Robust Training via Mildly Over-parameterized ReLU Nets

3 Warm Up: Hardness of Robust Generalization

4 Robust Generalization of Linear Separable Data

5 Robust Generalization of Low-dimensional-manifold Data

6 Conclusion

Peking University Why Robust Generalization in DL is Difficult 2022/5/31 3 / 35



Adversarial Examples

Although deep neural networks have achieved remarkable success in practice, it is
well-known that modern neural networks are vulnerable to adversarial examples.

Specifically, for a given image x , an indistinguishable small but adversarial perturbation δ
is chosen to fool the classifier f to produce a wrong class using f (x + δ).
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Approaches to Achieve Adversarial Robustness

To mitigate this problem, a series of robust learning algorithms have been proposed.

A common approach is to design adversarial training algorithms by using adversarial
examples as training data [MMS+17, TKP+18, SNG+19], which centrally considers the
min-max optimization problem as follow,

min
θ∈Θ

{
E(x ,y)∼D

[
max

∥x ′−x∥≤δ
 L(fθ(x ′), y)

]}
,

where Θ,D, δ,  L(·) denote parameter-space, data distribution, perturbation radius and loss
function, respectively.

Another line of works proposes some provably robust models to tackle this problem, such
as randomized smoothing [CRK19] and ℓ∞−dist Net [ZCL+21].
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Robust Generalization Gap is Large!

However, while the state-of-the-art adversarial training methods can achieve high robust
training accuracy (e.g. nearly 100% on CIFAR-10 [RXY+19]), all existing methods suffer
from large robust test error.

Therefore, it is natural to ask what is the cause for such a large generalization gap in the
context of robust learning.
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Question

Why is robust generalization in deep learning difficult?
Can we provide a theoretical understanding of this puzzling phenomenon?

Binghui Li∗, Jikai Jin∗, Han Zhong, John E. Hopcroft, Liwei Wang

Our paper [LJZ+22] can be found at:
https://arxiv.org/abs/2205.13863
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Key Empirical Observation: Data are Far from Each Other

In fact, it is observed that for real data sets, different classes tend to be well-separated
[YRZ+20].

Moreover, the typical perturbation radius is often much smaller than the separation
distance.
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Well-separated Data

Definition 1.1 (Separated Data)

Suppose that A,B ⊂ Rd and ϵ > 0. We say that A,B are ϵ-separated under ℓp norm
(1 ≤ p ≤ +∞) if

∥xA − xB∥p ≥ ϵ, ∀xA ∈ A, xB ∈ B.

Indeed, this assumption is necessary to ensure the existence of a robust classifier. Without this
separated condition, it is clear that there is no robust classifier even if a non-robust classifier
always exists.
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Robust Binary Classification Problems with Well-separated Data

In our work, we consider robust binary classification problems with well-separated data.
Formally, let A,B ⊂ [0, 1]d be two disjoint sets that are 2ϵ−separated, where points in A
have label +1 and points in B have label −1, and δ > 0 be the perturbation radius that
satisfies δ < ϵ.

We are mainly interested in the following questions:
▶ In robust training setting, given a N−sample data set D from arbitrary 2ϵ−separated A and

B, then how many parameters are enough to achieve zero δ−robust training error on D for
ReLU nets?

▶ In robust generalization setting, how many parameters are enough to δ−robustly classify
arbitrary 2ϵ−separated A and B for ReLU nets?
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Robust Training of Well-separated Data

Suppose that D ⊂ {x ∈ Rd |∥x∥p ≤ 1} with p ∈ {2,+∞} consists of N data, and the two
classes in D are 2ϵ-separated, where ϵ ∈

(
0, 12

)
is a constant.

With access to only finite amount of data, a common practice for learning a robust
classifier is to minimize the robust training error defined as

 ̂L
p,δ
D (f ) =

1

N

N∑
i=1

I
{
∃x ′, ∥x ′ − xi∥p ≤ δ, sgn(f (x ′)) ̸= yi

}
.

where δ ≥ 0 is the adversarial perturbation radius. When δ = 0, the definition coincides
with the standard training error.
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Õ(Nd) Parameters are Enough to Achieve Zero Robust Training Error

Theorem 2.1 (Upper Bound for the Size of Networks of Robust Training)

Let robustness radius δ < 1
2ϵ, then there exists a classifier f represented by a ReLU network

with at most
O
(
Nd log

(
δ−1d

)
+ N · polylog(δ−1N)

)
parameters, such that  ̂L

p,δ
D (f ) = 0.

This theorem is our main result in this section, which states that for binary classification
problems, a ReLU net with Õ(Nd) weights can robustly classify a data set of size N. It
implies that over-parameterization is sufficient to achieve zero robust training error.

While optimal (non-robust) memorization of N data points only needs constant width
[VYS21], our construction in Theorem 2.1 has width Õ(Nd). Therefore, if our upper
bound is nearly tight, then it can probably explain why increasing the network width can
benefit robust training [MMS+17].
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Robust Generalization of Well-separated Data

In the previous section, we give an upper bound on the size of ReLU networks to robustly
classify finite training data. However, it says nothing about robust generalization.

To evaluate the robust test performance, for a given probability measure P on
Rd × {−1,+1} and a robust radius δ ≥ 0, the robust test error of a classifier f : Rd → R
w.r.t P and δ under ℓp norm is defined as

 Lp,δ
P (f ) = E(x ,y)∼P

[
max

∥x ′−x∥p≤δ
I{y ̸= sgn(f (x ′))}

]
.

In contrast with the training set which only consists of finite data points, when studying
generalization, we must consider potentially infinite points in the classes that we need to
classify.
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There Exists a Robust Classifier

Proposition 3.1 (There Exists a Lipschitz and Robust Classifier)

For 2ϵ-separated A,B ⊂ [0, 1]d under ℓp norm with p ∈ {2,+∞}, the classifier

f ∗(x) :=
dp(x ,B)−dp(x ,A)
dp(x ,A)+dp(x ,B) is ϵ−1-Lipschitz continuous, and satisfies  Lp,ϵ

P (f ∗) = 0 for any

probability distribution P on A ∪ B, where dp(q,S) := infq′∈S ∥q − q ′∥p.

It turns out that, the 2ϵ-separated condition ensures the existence of such a classifier.
Moreover, it can be realized by a Lipschitz function.
However, it remains unclear whether the Lipschitz function constructed in Proposition 3.1
can actually be efficiently approximated by neural networks.
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Warm Up: Robust Generalization Requires Exponential Parameters

The following theorem shows that ReLU networks with exponential size is sufficient for as
robust classification.

Theorem 3.2 (Upper Bound for the Size of Networks of Robust Generalization)

For any two 2ϵ-separated A,B ⊂ [0, 1]d under ℓp norm with p ∈ {2,+∞}, distribution P on
the supporting set S = A ∪ B and robust radius c ∈ (0, 1), there exists a ReLU network f with
at most

Õ
(

((1 − c)ϵ)−d
)

parameters, such that  Lp,cϵ
P (f ) = 0.

Indeed, it is well known that without additional assumptions, an exponentially large number of
parameters is also necessary for approximating a Lipschitz function [DHM89, SYZ22], which
motivates us to consider the lower bound for the size of networks in the same setting.
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Warm Up: Robust Generalization Requires Exponential Parameters

Theorem 3.3 (Lower Bound for the Size of Networks of Robust Generalization)

Let Fn be the set of functions represented by ReLU networks with at most n parameters.
Suppose that for any 2ϵ-separated sets A,B ⊂ [0, 1]d under ℓp norm with p ∈ {2,+∞}, there
exists f ∈ Fn that can classify A,B with zero (standard) test error, then it must hold that

n = Ω
(

(2ϵ)−
d
2 (d log (1/2ϵ))−

1
2

)
.

This result shows that even without requiring robustness, neural networks need to be
exponentially large to correctly classify A and B.

It implies that mere separability of data sets is insufficient to guarantee that they can be
classified by ReLU networks, unless the network size is exponentially large.
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Finer Data Structures Should be Taken into Consideration

However, one should be careful when interpreting the conclusion of Theorem 3.3, since
real-world data sets may possess additional structural properties.

Specifically, the joint distribution of data can be decomposed as

P(X ,Y ) = P(Y | X )︸ ︷︷ ︸
labeling mapping

P(X )︸ ︷︷ ︸
input

,

where P(X ,Y ),P(Y | X ), and P(X ) denote the joint, conditional and marginal
distributions, respectively.

In subsequent sections, we consider two well-known properties of data sets that correspond
to the labeling mapping structure and the input structure, respectively, and study whether
they can bring improvement to neural networks’ efficiency for robust classification.
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Linear Separable Data

As we have seen for separated data, if no other structural properties are taken into
consideration, even standard generalization requires exponentially large neural networks.

This motivates us to consider the following question: assuming that there exists a simple
classifier that achieves zero standard test error on the data such as the arguably simplest
setting where the given data is linear separable and well-separated, is it guaranteed
that neural networks with reasonable size can also achieve high robust test accuracy?
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Our Main Result: EXP Lower Bound Still Holds for Linear Separable Data

The following theorem is the main result of our paper.

Theorem 4.1 (Lower Bound for Linear Separable Data)

Let ϵ ∈ (0, 1) be a small constant, p ∈ {2,+∞} and Fn be the set of functions represented by
ReLU networks with at most n parameters. There exists a sequence

Nd = Ω
(

(2ϵ)−
d−1
6

)
, d ≥ 1 and a universal constant C1 > 0 such that the following holds: for

any c ∈ (0, 1), there exists two linear separable sets A,B ⊂ [0, 1]d that are 2ϵ-separated under
ℓp norm, such that for any µ0-balanced distribution P on the supporting set S = A ∪ B and
robust radius cϵ we have

inf
{

 Lp,cϵ
P (f ) : f ∈ FNd

}
≥ C1µ0.

Theorem 4.1 states that the robust test error is lower-bounded by a positive constant
α = C1µ0 unless the ReLU network has size larger than exp(Ω(d)).

On the contrary, if we do not require robustness, then the data can be classified by a
simple linear function.
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An Exponential Separation of Neural Network Size

The practical implication of Theorem 4.1 is two-fold:

First, by comparing with non-robust linear classifiers, one can conclude that robust
classification may require exponentially more parameters than the non-robust case, which
is consistent with the common practice that larger models are used for adversarial robust
training.

Second, together with our upper bound in Theorem 2.1, Theorem 4.1 implies an
exponential separation of neural network size for achieving high robust training and test
accuracy.
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Proof Sketch of Theorem 4.1

Let K = [ 1
2ϵ ], and ϕ : {1, 2, · · · ,K}d−1 → {−1,+1} be an arbitrary mapping, we define

Sϕ =
{(

i1
K , i2

K , · · · , id−1

K , 12 + ϵ0 · ϕ(i1, i2, · · · , id−1)
)

: 1 ≤ i1, i2, · · · , id−1 ≤ K
}

, where ϵ0 is an

arbitrarily small constant. The hyperplane x (n) = 1
2 partitions Sϕ into two subsets, which we

denote by Aϕ and Bϕ. We can check that Aϕ and Bϕ satisfies all the required conditions.

The remain of proof is to show that there exists some choice of ϕ such that robust
classification is hard. By estimating growth function of {ϕ}, we can derive the lower bound for
the VC-dimension of Fn i.e.

VC-Dim(Fn) = exp(Ω(d)).

Finally, by applying the relation between the VC-dimension and the number of parameters
appeared in [BHLM19], we prove the lower bound for the size of networks in Theorem 4.1 .
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Real-life Data Lies on a Low-dimensional Manifold

A common belief of real-life data such as images is that the data points lie on a
low-dimensional manifold.

e.g. some empirical work shows that the 28 × 28 = 784 dimensional image from MNIST
can be reduced to nearly 10 dimensional representations [WYZ16].

Motivated by this, we assume that data lies on a low-dimensional manifold M embedded
in [0, 1]d with the intrinsic dimension k (k ≪ d) i.e. supp(X ) ⊂ M ⊂ [0, 1]d . And we
extend robust classification to the version of manifold as

 Lp,δ
M,P(f ) = E(x ,y)∼P

[
max

x ′∈M,∥x ′−x∥p≤δ
I{y ̸= f (x ′)}

]
.
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Improved Upper Bound for Low-dimensional-manifold Data

Now, we present our main result in this section, which establishes an improved upper bound
for size that is mainly exponential in the intrinsic dimension k instead of the ambient data
dimension d .

Theorem 5.1 (Improved Upper Bound for Low-dimensional-manifold Data)

Let M ⊂ [0, 1]d be a k−dimensional compact poly-partitionable Riemannian manifold with
the condition number τ > 0. For any two 2ϵ− separated A,B ⊂ M under ℓ∞ norm,
distribution P on the supporting set S = A ∪ B and robust radius c ∈ (0, 1), there exists a
ReLU network f with at most

Õ
((

(1 − c) ϵ/
√
d
)−k̃

)
parameters, such that  L∞,cϵ

M,P (f ) = 0, where k̃ = O (k log d) is almost linear with respect to the
intrinsic dimension k, only up to a logarithmic factor.
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The Curse of Dimensionality is Inevitable

Although we have shown that robust classification will be more efficient when data lies on a
low-dimensional manifold, there is also a curse of dimensionality

Theorem 5.2 (Lower Bound for Low-dimensional-manifold Data)

Let ϵ ∈ (0, 1) be a small constant. There exists a sequence {Nk}k≥1 that satisfies

Nk = Ω
(

(2ϵ
√

d/k)−
k
2

)
. and a universal constant C1 > 0 such that the following holds: let

M ⊂ [0, 1]d be a complete and compact k−dimensional Riemannian manifold with
non-negative Ricci curvature , then there exists two 2ϵ-separated sets A,B ⊂ M under ℓ∞
norm, such that for any µ0−balanced distribution P on the supporting set S = A ∪ B and
robust radius c ∈ (0, 1), we have

inf
{

 L∞,cϵ
P (f ) : f ∈ FNk

}
≥ C1µ0.

In other words, the robust test error is lower-bounded by a positive constant α = C1µ0 unless
the neural network has size larger than exp(Ω(k)).
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Conclusion

In our work, we show that there exists an exponential separation between the required
size of neural networks for achieving low robust training and test error.

Based on our results, we conjecture that the widely observed drop of robust test accuracy
is not due to limitations of existing algorithms – rather, it is a more fundamental issue
originating from the expressive power of neural networks.
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